Enrollment No:	
EMILORING ILL 140.	

C.U.SHAH UNIVERSITY

Summer Examination-2019

Subject Name: Engineering Mathematics - IV

Subject Code: 4TE04EMT1 Branch: B.Tech (Auto/Civil/EE/EC/Mech)

Semester: 4 Date: 15/04/2019 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) The finite Fourier cosine transform of f(x) = 2x, 0 < x < 4 is
 - (A) $\frac{32}{n^2\pi^2} \Big[(-1)^n 1 \Big]$ (B) $\frac{16}{n^2\pi^2} \Big[(-1)^n 1 \Big]$ (C) $\frac{32}{n^2\pi^2} (-1)^n$
 - (D) none of these
- The Fourier sine transform of $f(x) = \begin{cases} k, & 0 < x < a \\ 0, & x > a \end{cases}$ is
 - (A) $\sqrt{\frac{2}{\pi}} k \left(\frac{\sin a\lambda}{\lambda} \right)$ (B) $\sqrt{\frac{2}{\pi}} k \left(\frac{1 \cos a\lambda}{\lambda} \right)$ (C) $\sqrt{\frac{2}{\pi}} k \left(\frac{\sin a\lambda}{a} \right)$
 - (D) none of these
- Under the inverse transformation $w = \frac{1}{z}$ the straight line ax + by = 0

transform into

- (A) circle (B) straight line passing through origin (C) straight line
- (D) none of these
- d) Which one of the following is an analytic function
 - (A) f(z) = Riz (B) f(z) = Im z (C) $f(z) = \overline{z}$ (D) $f(z) = \sin z$
- e) The unit vector tangent to the curve x = t, $y = t^2$, $z = t^3$ at the point (-1,1,-1) is

(A)
$$\frac{1}{\sqrt{14}} (i+2j+3k)$$
 (B) $\frac{1}{\sqrt{14}} (i-2j+3k)$ (C) $\frac{1}{\sqrt{3}} (i+j+k)$

- (D) $\frac{1}{\sqrt{3}}(i-j+k)$
- **f**) The value of the line integral $\int \nabla (x+y-z) \cdot d\vec{r}$ from (0,1,-1) to (1,2,0) is
 - (A)-1 (B) 3 (C) 0 (D) none of these

	(A) odd and small (B) even and small (C) even and large
	(D) none of these
k)	The convergence in the Gauss – Seidel method is faster than Gauss –
	Jacobi method.
	(A) TRUE (B) FALSE
l)	The Gauss – Jordan method in which the set of equations are
	transformed into diagonal matrix form.
	(A) TRUE (B) FALSE
m)	Using modified Euler's method, the value of $y(0.1)$ for
	$\frac{dy}{dx} = x - y$, $y(0) = 1$ is
	••••
	(A) 0.909 (B) 0.809 (C) 0.0809 (D) 0.0908
n)	Which of the following methods is the best for solving initial value
	problems:
	(A) Taylor's series method (B) Euler's method
	(C) Runge-Kutta method of 4 th order (D) Modified Euler's method

approximation should be

 E^{-1} equal to

hD equal to

h)

j)

Q-2

(A) $1-\nabla$ (B) $1+\nabla$ (C) $1+\delta$ (D) $1-\delta$

The nth difference of a polynomial of degree n is (A) constant (B) zero (C) n! (D) none of these

(A) $\log(1+\Delta)$ (B) $\log(1-\Delta)$ (C) $\log(1+E)$ (D) $\log(1-E)$

In application of Simpson's $\frac{1}{3}$ rule, the interval of integration for closer

Attempt all questions (14)

a) Use Stirling's formula to find y_{28} given that

Attempt any four questions from Q-2 to Q-8

 $y_{20} = 49225$, $y_{25} = 48316$, $y_{30} = 47236$, $y_{35} = 45926$ and $y_{40} = 44306$.

b) Construct Newton's forward interpolation polynomial to the following data: (5)

| x | 4 | 6 | 8 | 10 |

		у	1	3	8	16	
						0 0	< x < a
c)	Find the Fourier sine trai	nsfoi	m of	f(x)	$c) = \begin{cases} 1 & \text{if } 1 \\ \text{if } 1 & \text{if } 1 \end{cases}$	$x a \le$	$\leq x \leq b$

c) Find the Fourier sine transform of $f(x) = \begin{cases} x & a \le x \le b \\ 0 & x > b \end{cases}$ (4)

Q-3 Attempt all questions (14)

a) Solve the following system of equations by Gauss-Seidal method. (5) $10x_1 + x_2 + 2x_3 = 44$, $2x_1 + 10x_2 + x_3 = 51$, $x_1 + 2x_2 + 10x_3 = 61$

b) The population of a certain town is shown in the following table:

-L									
Year	1961	1971	1981	1991	2001				
Population (in thousands)	19.96	36.65	58.81	77.21	94.61				

(5)

(5)

Find the rate of growth of population in 1991.

c)	Show that $u(x, y) = 2x - x^3 + 3xy^2$ is harmonic in some domain and find	(4)
	a harmonic conjugate of $u(x, y)$.	

Q-4 Attempt all questions (14)

- a) Use Euler's method to find an approximate value of y at x = 0.1, in five steps, given that $\frac{dy}{dx} = x y^2$ and y(0) = 1.
- **b)** Evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by using Simpson's $1/3^{rd}$ rule. (5)
- c) Solve the following system of equations using Gauss-elimination method: (4)

$$-x_1 + x_2 + 2x_3 = 2$$
, $3x_1 - x_2 + x_3 = 6$, $-x_1 + 3x_2 + 4x_3 = 4$

Q-5 Attempt all questions (14)

- a) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin, although Cauchy-Riemann equations are satisfied. (5)
- b) Using Green's Theorem, evaluate $\iint_C [(y-\sin x)dx + \cos xdy]$ where C is (5)

the plane triangle enclosed by the lines y = 0, $x = \frac{\pi}{2}$ and $y = \frac{2}{\pi}x$.

c) Compute f(9.2) by using Lagrange Interpolation formula from the following data:

х	9	9.5	11		
у	2.1972	2.2513	2.3979		

- Q-6 Attempt all questions (14)
 - a) Prove that $\vec{F} = (y^2 \cos x + z^3)i + (2y \sin x 4)j + 3xz^2k$ is irrotational and find its scalar potential. (5)
 - b) Find the bilinear transformation which sends the points $z = 0, 1, \infty$ into the points w = -5, -1, 3 respectively. What are the invariant points of the transformation?
 - c) Solve $\frac{dy}{dx} = 3 + 2xy$ where y(0) = 1 for x = 0.1 by Picard's method. (4)
- Q-7 Attempt all questions (14)
 - a) Using Cauchy Riemann equations, prove that if f(z)=u+iv is analytic with constant modulus, then u, v are constants.
 - **b)** If $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^3\hat{k}$, show that $\int_C \vec{F} \cdot d\vec{r}$ is independent of the (5)

path of integration. Hence evaluate the integral when C is any path joining A(1, -2, 1) to B(3, 1, 4).

c) The function f(x) is given as follows: (4)

			` '								
											1.0
у	1	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0

Compute the integral of f(x) between x = 0 and x = 1.0 using Trapezoidal rule.

- a) Using Taylor's series method, compute y(-0.1), y(0.1), y(0.2) correct to four decimal places, given that $\frac{dy}{dx} = y \frac{2x}{y}$, y(0) = 1
- **b)** Find the Fourier cosine and sine integral of $f(x) = e^{-kx}$ (x > 0, k > 0). (5)
- c) Find the angle between the tangents to the curve $x = t^2$, y = 2t, $z = -t^3$ at the points t = 1 and t = -1.

